I am a first-year PhD student in Computer Science at Stanford University focusing on theory and computational education. My research interests are in probabilistic reasoning, algorithms, and building intelligent systems that help humans learn.
I completed my Bachelor's in Mathematics at Stanford University advised by Kannan Soundararajan. As an undergraduate, I did research with Stefano Ermon and Chris Piech. I also lectured a class on standard C++ programming!
I love teaching and thinking about problems that make my brain hurt. I keep a blog on the side where I write about random Maths, CS, and Philosophy related gems that come my way.
Here are some links to the class websites of the courses I have taught at Stanford so far. If you have any questions or suggestions for improvements, please feel free to email me!
Proceedings of the 14th International Conference on Educational Data Mining, Paris, France. 2021
Proceedings of the 52nd ACM Technical Symposium on Computer Science Education, (Virtual) USA, 2021.
Proceedings of the 34th AAAI Conference on Artificial Intelligence, New York, USA. 2020.
Proceedings of the 36th International Conference on Machine Learning, Long Beach, USA. 2019
Proceedings of the 12th International Conference on Educational Data Mining, Montréal, Canada. 2019
A secure, reliable, cross-platform desktop application to administer computerised examination for large classes. Has been used to administer over 5000 exams in Stanford's introductory CS classes.
Exploring the effectiveness of deep generative recurrent networks in the task of understanding and generating motion. In particular, we attempt to generate GIFs of realistic mechanical motion on a synthetic dataset from an initial seed frame.
An assignment I wrote where students implement an algorithm that finds a link ladder between two given Wikipedia pages.